Roll No.:....

320555(20)

B. E. (Fifth Semester) Examination, April-May 2021

(New Scheme)

(Civil Engg. Branch)

NUMERICAL METHODS & COMPUTER PROGRAMMING

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all question. Part (a) is compulsory from each question & carry 2 marks. Attempt any two parts from part (b), (c) and (d) from each question & carries 7 marks.

(i) White a program to I-tinu conjugate of a courte

- 1. (a) Define constants & variables.
 - (b) Define operators. Explain the basic operators in C++.
 - (c) What are control statements? Explain for, while &

do-while constructs.

(d) Write a C++ program to compute bending moment & shear force at every quarter point along the span of a simply supported beam carrying a uniformly distributed load.

Unit-II

- 2. (a) What are library functions?
 - (b) Explain the following:
 - (i) Function declaration
 - (ii) Function definition
 - (iii) Function calling
 - (c) Define arrays. Write a program to sort an array of integers in ascending (Increasing value) order.
 - (d) Write a program to find transpose of a matrix.

Married Control of Transport treets our Control of the

Unit-III

- 3. (a) What is the purpose of initgraph?
 - (b) Explain the follwing functions:

- (i) Circle ()
- (ii) Arc ()
- (iii) Ellipse ()
- (iv) Line ()
- (c) Write a program to draw a simple T-section.
- (d) Write a program to draw two concentric circles of different radius.

Unit-IV

- 4. (a) Explain the term curve fitting.
 - (b) Solve the following equation by Gauss elimination method:

$$2x + y + z = 10$$
in the continuous street at a discontinuous street at the continuous street a

$$3x + 2y + 3z = 18$$

$$x + 4y + 9z = 16$$

(c) Solve the following set of simultaneous equations using Gauss-Jordan method:

$$2x + y + 3z = 6$$

$$2x + 2y + z = 5$$

$$2x + 3y + 2z = 7$$

(d) Fit a second degree parabola to the following data:

$$x = 0$$
 1 2 3 4

To definite multiplication i_{i} and i_{i} and i_{j} to f_{i} be constituted H if i_{i} **Unit-V**

- 5. (a) Write down the types of finite differences.
 - (b) Give that:

x	10	11	12	13	14	15	16
6 y	7.989	8-403	18:781	9/129	9451	9.750	10-031

milian manari

Create a forward difference table.

(c) Apply Runge Kutta fourth order method to find an approximate value of y when x = 0.2 given that

$$\frac{dy}{dx} = x + y \text{ and } y = 1 \text{ when } x = 0.$$

(d) Apply Milne's method, to find a solution of the differential equation $y' = x^0 - y^2$ in the range

320555(20)

[5]

 $0 \le x \le 1$ for the boundary condition y = 0 at x = 0.